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Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down
and the specific-heat singularity
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The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating
magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field
dynamic equation of motion for the average magnetization. In both cases, the Debye ‘‘relaxation’’ behavior of
the dynamic order parameter has been observed and the ‘‘relaxation time’’ is found to diverge near the
dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence
of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic
equation. The temperature variation of appropriately defined ‘‘specific heat’’ is studied by the Monte Carlo
simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition
point. @S1063-651X~97!02404-5#

PACS number~s!: 05.70.Ln, 05.50.1q, 05.30.2d
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I. INTRODUCTION

The dynamic response of the Ising system in the prese
of an oscillating magnetic field has been studied extensiv
@1–3# in the last few years. The dynamic hysteresis@1–3#
and the nonequilibruim dynamic phase transition@4–6# are
two important aspects of the dynamic response of the kin
Ising model in the presence of an oscillating magnetic fie
This kind of phase transition in the Ising model was stud
by Tome and Oliviera@4#. They solved the mean-field~MF!
dynamic equation of motion~for the average magnetization!
of the kinetic Ising model in the presence of a sinusoida
oscillating magnetic field. They have defined the order
rameter as the time averaged magnetization over a full c
of the oscillating field and showed that depending upon
value of the field and the temperature, the order param
takes nonzero value from a zero value. Precisely, in the fi
amplitude and temperature plane, there exists a phase bo
ary separating dynamic ordered~nonzero value of order pa
rameter! and disordered~order parameter vanishes! phases.
They @4# have also observed and located a tricritical po
~TCP!, @separating the nature~discontinuous-continuous! of
the transition# on the phase boundary line~see Fig. 1!. How-
ever, such a mean-field transition is not truly dynamic
origin and exists even in the static~or zero frequency! limit.
This is because, if the field amplitude is less than the co
cive field ~at a temperature less than the transition tempe
ture without any field!, then the response magnetization va
ies periodically but asymmetrically even in the ze
frequency limit; the system remains locked to one well of
free energy and cannot go to the other one in the absenc
fluctuation.

Lo and Pelcovits@5# first attempted to study the dynam
nature of this phase transition in the kinetic Ising model
the Monte Carlo~MC! simulation. Here, the transition disap
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pears in the zero frequency limit; due to the fluctuations,
magnetization flips to the direction of the magnetic field a
the dynamic order parameter~time averaged magnetization!
vanishes. However, Lo and Pelcovits@5# have not reported
any precise phase boundary. Acharyya and Chakrabart@6#
studied the nonequilibrium dynamic phase transition in
kinetic Ising model in the presence of an oscillating magne
field by extensive MC simulation. They@6# have also iden-
tified that this dynamic phase transition is associated with
breaking of the symmetry of the dynamic hysteresis (m2h)
loop. In the dynamically disordered~value of order param-
eter vanishes! phase the corresponding hysteresis loop
symmetric, and loses its symmetry in the ordered phase~giv-

FIG. 1. Schematic diagram of the dynamic phase boundar
the field amplitude (h0) and temperature (T) plane. The dotted line
is the boundary of the discontinuous transition and the solid
represents the boundary of continuous transition. The small ci
represents the tricritical point~TCP!. Insets demonstrate the brea
ing of the symmetry of the dynamic hysteresis (m2h) loop due to
dynamic transition.
2407 © 1997 The American Physical Society
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2408 56MUKTISH ACHARYYA
ing a nonzero value to the dynamic order parameter!. They
@6# also studied the temperature variation of the ac susce
bility components near the dynamic transition point. The m
jor observation was that the imaginary~real! part of the ac
susceptibility gives a peak~dip! near the dynamic transition
point ~where the dynamic order parameter vanishes!. The
conclusions were:~i! this is a distinct signal of phase trans
tion and~ii ! this is an indication of the thermodynamic n
ture of the phase transition.

It is worth mentioning here that the statistical distributi
of a dynamic order parameter has been studied by S
et al. @7#. The nature of the distribution changes near
dynamic transition point. They have also observed@7# that
the fluctuation of the hysteresis loop area becomes cons
ably large near the dynamic transition point.

In the equilibrium critical phenomena, both the length a
time scales diverge at criticality. This gives rise to the s
gularities in various thermodynamic quantities, such as
specific heat and the relaxation time. Can one expect sim
kinds of features in the case of this nonequilibrium dynam
phase transition problem? To be specific,~i! is there any
‘‘relaxation time,’’ in this nonequlibrium problem that di
verges at the dynamic transition point, and~ii ! can there be
any appropriately defined ‘‘specific heat,’’ that will sho
singular behavior at the transition point?

The main motivation of this paper is to find some answ
to these questions at least numerically. The nonequilibr
dynamic phase transition in the kinetic Ising model in t
presence of an oscillating magnetic field has been studie
MC simulation. Also the MF dynamic equation has be
solved numerically, to compare the results. The ‘‘relaxatio
behavior~defined in the following section! of the dynamic
order parameter@4# and the behavior of specific heat~defined
in Sec. III! near the dynamic transition point are studied
MC simulation. It may be mentioned here that the prelim
nary results of specific-heat singularity near the dynam
transition point were reported briefly in Ref.@8#. More de-
tailed results are reported here. The relaxation behavior
also been studied here by solving numerically the mean-fi
~MF! dynamic equation of motion of the kinetic Ising mod
in the presence of an oscillating magnetic field. The M
equation has also been solved exactly in the linearized l
and studied in the relaxation behavior of the dynamic or
parameter, near the dynamic transition point. The pape
organized as follows. In Sec. II the relaxation behavior of
order parameter near the dynamic transition point is stud
both by the Monte Carlo simulation and by solving t
mean-field dynamic equation of motion of the kinetic Isi
model. In Sec. III the temperature variation of the spec
heat is studied near the transition point only by the Mo
Carlo simulation. A brief summary of all the results is give
in Sec. IV.

II. RELAXATION BEHAVIOR OF THE DYNAMIC ORDER
PARAMETER

A. Monte Carlo study

1. The model and simulation

A ferromagnetically interacting~nearest neighbor! Ising
model in the presence of a time varying magnetic field c
be represented by the Hamiltonian
ti-
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H52(̂
i j &

Ji j si
zsj

z2h~ t !(
i

si
z . ~2.1!

Here,si
z(561) is the Ising spin variable,Ji j is the interac-

tion strength, andh(t)5h0cos(vt) represents the oscillating
magnetic field, whereh0 and v are the amplitude and fre
quency, respectively, of the oscillating field. The system is
contact with an isothermal heat bath at temperatureT. For
simplicity all Ji j are taken equal to unity and a period
boundary condition is chosen.

A square lattice of linear sizeL ~5100! has been consid
ered. At any finite temperatureT, for a fixed frequency (v)
and amplitude (h0) of the field, the dynamics of this system
has been studied here by Monte Carlo simulation us
Glauber single spin-flip dynamics with the Metropolis rate
spin flip. Each lattice site is updated here sequentially a
one such full scan over the lattice is defined as the time
~Monte Carlo step or MCS! here. The initial configuration
has been chosen such that all the spins are directed upw
The instantaneous magnetization~per site! m(t)
5(1/L2)( isi

z has been calculated. From the instantane
magnetization, the dynamic order parameterQ
5(v/2p)rm(t)dt ~time averaged magnetization over a fu
cycle of the oscillating field! is calculated.

2. Results

Figure 1 shows the schematic diagram of the dynam
phase boundary in the field amplitude (h0) and temperature
(T) plane. For small values ofh0 andT the dynamic order
parameterQ is nonzero and the corresponding dynamic h
teresis loop (m2h loop! is asymmetric, for larger values o
h0 and T, the dynamic order parameterQ vanishes, corre-
spondingly, them2h loop becomes symmetric~inset of Fig.
1!. The dynamic transition temperature (Td) is a function of
field amplitude (h0). The transition across the dotted line~in
Fig. 1! is discontinuous and that across the solid line is c
tinuous. For very small values ofh0 the nature of the dy-
namic transition is continuous. In this paper, all studies
done in the region whereQ always undergoes a continuou
transition.

It has been observed carefully that the dynamic order
rameterQ does not acquire the stable value within the fi
cycle of the oscillating field. It takes several cycles~of the
oscillating field! to get stabilized, i.e., it shows relaxatio
behavior. Starting from the initial~all spins are up! configu-
ration, theQ has been calculated for a various number~say
n) of cycles of the oscillating magnetic field and plotte
~inset of Fig. 2! against the number of cycles (n). Each value
of Q shown here has been obtained by averaging over
random Monte Carlo samples. The inset of Fig. 2 show
typical relaxation behavior of the dynamic order parame
Q. This has been plotted for fixed values ofv52p30.04,
h051.0, andT51.5. It shows that the dynamic order param
eterQ relaxes as time~number of cycles! goes on. The best
fit curves shows that the relaxation is an exponential ty
So, one can writeQ;Q0exp(2n/G), whereG is the relax-
ation time which provides the ‘‘time scale’’ for this nonequ
librium problem. The physical interpretation ofG is the num-
ber of cycles required so thatQ becomes 1/e times its initial
value ~value of Q at starting cycle!. From the exponentia
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fitting, the relaxation time (G) has been measured. The tem
perature (T) variation, for fixed values ofv andh0, of this
relaxation timeG has been studied~in the disordered region
of dynamic transition! and displayed in Fig. 2. The temper
ture (T) variations ofG are shown~Fig. 2! for two different
values of h0(50.5 and 1.0) and for a fixed value o
v52p30.04 here. From the figure~Fig. 2! it is clear that
the relaxation timeG diverges near the dynamic transitio
point ~whereQ vanishes! in the both cases (h050.5 and 1.0!.

B. Mean-field study

1. Mean-field equation of motion and numerical solution

Although as mentioned earlier the mean-field system d
not undergo a true dynamic transition~as the transition exists
even in the static limit!, the mean-field case has been co
sidered here as a pathological one.

The time evolution of the average magnetization~under
mean-field approximation! in the presence of an oscillatin
magnetic field can be described by the equation

t
dm

dt
52m1tanhS m~ t !1h~ t !

T D , ~2.2!

where m(t) is the instantaneous magnetization,h(t)
5h0cos(vt) is a sinusoidally oscillating magnetic field,T is
the temperature, andt is a constant.

This equation has been solved by fourth order Run
Kutta method takingt52p30.01 anddt50.01. The initial
boundary condition ism(0)51.0. From the numerical solu
tion for the instantaneous magnetizationm(t), the dynamic
order parameterQ @5(v/2p)rm(t)dt# has been calcu
lated.

FIG. 2. Monte Carlo results of the temperature (T) variation of
relaxation time (G) for two different values of field amplitude
(h0): the bullet representsh051.0 and the diamond represen
h050.5. Solid lines show the temperature (T) variations of dy-
namic order parameterQ. Inset shows a typical relaxation ofQ
plotted against the number of cyclesn. The solid line is the best-fit
exponential form of the data obtained from MC simulation. He
L5100, andv52p30.04.
s

-

-

2. Results

The inset of Fig. 3 shows a typical relaxation of the d
namic order parameterQ for v52p30.02,h050.4, andT
50.765. Here, also the exponential type of relaxation is
served and the relaxation time has been measured in
same way, discussed earlier~in the MC case!. Figure 3
shows the temperature variation of the relaxation timeG for
v52p30.02 and two different values ofh0 ~50.3 and 0.4!.
Here, also from the figure,~Fig. 3! it is clear that the typical
time scale or the relaxation timeG for this nonequilibrium
problem diverges for both the cases (h050.3 and 0.4! near
the dynamic transition point~whereQ vanishes!.

3. An approximate solution of the MF equation

In the limit of h0→0 andT.1, Eq. ~2.2! can be linear-
ized ~i.e., linearizing the tanh term! as

t
dm

dt
52em1

h0cos~vt !

T
,

wheree5121/T. The solution of the above equation is

m~ t !5exp~2et/t!1m0cos~vt2f!,

wherem0 andf are two constants. The value of the dynam
order parameterQ at thenth cycle of the oscillating field is

Q5
v

2p R m~ t !dt5
v

2pEtn21

tn
m~ t !dt,

wheretn52pn/v. The value ofQ, at thenth cycle, can be
written as

,

FIG. 3. Mean-field results of the temperature (T) variation of
relaxation time (G) for two different values of field amplitudes
(h0): the filled triangle representsh050.4 and the filled square
representsh050.3. Solid lines represent the temperature variat
of the dynamic order parameterQ. Inset shows a typical relaxation
of Q plotted against the number of cyclesn. The solid line is the
best-fit exponential for the data obtained from the solution of E
~2.2!. Here,v52p30.02.
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Q5Q0expS 2
2pne

tv D5Q0exp~2n/G!,

whereQ0 is a constant independent ofn. The above form
shows thatQ relaxes exponentially with the number o
cycles n of the oscillating field. The relaxation timeG is
equal to (tv/2p)e21. It should be noted here that the d
namic transition occurs atT 5 1 in the limit h0→0 @4#. So,
for h0→0 near the dynamic transition point~where the lin-
earization holds well! the behavior of relaxation time is

G;e21;@T2Td~h0→0!#21,

which shows the power law~exponent is unity! divergence
of the relaxation time at the dynamic transition point.

III. BEHAVIOR OF SPECIFIC HEAT
NEAR THE TRANSITION POINT

The time averaged~over a full cycle! cooperative energy
of the system may be defined as

Ecoop52~v/2pL2! R S (̂
i j &

si
zsj

zD dt,

and the time averaged~over a full cycle! total energy~includ-
ing both cooperative and field part! of the system can be
written as

Etot52~v/2pL2! R S (̂
i j &

si
zsj

z1h~ t !(
i

si
zD dt.

The temperature variations ofEtot andEcoop have been stud
ied. The specific heats are defined asCtot5dEtot /dT and

FIG. 4. Monte Carlo results of the temperature variations
Ccoop for two different values ofh0: the filled square represent
h050.8 and the filled triangle representsh050.4. Solid lines repre-
sent the temperature variations ofQ. Inset shows the temperatur
variations ofEcoop for two different values ofh0: ~I! h050.8 and
~II ! h050.4. Here,L5100 andv52p30.01.
Ccoop5dEcoop/dT. The temperature variations of the speci
heats have also been studied and have prominent diver
behavior near the dynamic transition point~where Q van-
ishes!.

Here again, a square lattice of linear sizeL ~5100! has
been considered. BothEcoopandEtot are calculated using MC
simulation. Each data point has been obtained by avera
over 100 different MC samples.

A. Results

The temperature derivatives ofEcoop and Etot can be de-
fined as the specific heats for this nonequilibrium proble
The temperature variations ofQ, Ccoop(5dEcoop/dT), and
Ctot(5dEtot /dT) have been studied. The values ofh0 ~50.4
and 0.8! are chosen here in such a way thatQ always under-
goes a continuous transition. The temperature variation
Q, Ccoop, are shown in Fig. 4. The inset shows the variati
of total cooperative energyEcoop ~per spin! with temperature
(T). In this case the frequency (v) of the field is kept fixed
(v50.0628!. Figure 5 shows the temperature variation~for
the same values ofv, h0, andT) of Ctot and the inset shows
the temperature variation of the total~cooperative1 field!
energy~per spin!. From the figure it is clear that the appro
priately defined specific heatsCcoop andCtot diverge near the
dynamic phase transition point.

IV. SUMMARY

The nonequlibrium dynamic phase transition, in the
netic Ising model in the presence of an oscillating magne
field, is studied both by Monte Carlo simulation and by so
ing the mean-field dynamic equation of motion.

f FIG. 5. Monte Carlo results of the temperature variations ofCtot

for two different values ofh0: the filled square representsh050.8
and the filled triangle representsh0 5 0.4. Solid lines represent th
temperature variations ofQ. Inset shows the temperature variatio
of Etot for two different values ofh0: ~I! h050.8 and~II ! h050.4.
Here,L5100 andv52p30.01.
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Acharyya and Chakrabarti@6# observed that the comple
susceptibility components have peaks~or dips! at the dy-
namic transition point. Sideset al. @7# observed that the fluc
tuation in the hysteresis loop area grows~seems to diverge!
near the dynamic transition point.

In this study it is observed that the relaxation time and
appropriately defined specific heat diverge near the dyna
transition point. All the results are obtained here nume
cally. No attempts were made to extract any exponent va
from the numerical studies.

It should be mentioned that recent experiments@9# on
ultrathin ferromagnetic Fe/Au~001! films have been per
formed to investigate the frequency dependence of hyste
loop areas. Recently, attempts have been made@10# to mea-
sure the dynamic order parameterQ experimentally, in the
B

e
ic

i-
es

sis

same material, by extending their previous study@9#. The
dynamic phase transitions have been studied from the
served variation ofQ. However, the detailed study of th
dynamic phase transitions by measuring variations of ass
ated response functions~such as the ac susceptibility, sp
cific heat, correlations, relaxations, etc.! have not been done
experimentally.
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