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Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down
and the specific-heat singularity
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The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating
magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field
dynamic equation of motion for the average magnetization. In both cases, the Debye ‘“relaxation” behavior of
the dynamic order parameter has been observed and the “relaxation time” is found to diverge near the
dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence
of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic
equation. The temperature variation of appropriately defined “specific heat” is studied by the Monte Carlo
simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition
point. [S1063-651X97)02404-5

PACS numbg(s): 05.70.Ln, 05.50tq, 05.30-d

[. INTRODUCTION pears in the zero frequency limit; due to the fluctuations, the
magnetization flips to the direction of the magnetic field and
The dynamic response of the Ising system in the presendéie dynamic order parametd@ime averaged magnetizatipn
of an oscillating magnetic field has been studied extensivelyanishes. However, Lo and Pelcovi| have not reported
[1-3] in the last few years. The dynamic hystereidis-3]  any precise phase boundary. Acharyya and Chakraf@rti
and the nonequilibruim dynamic phase transitjdn-6] are ~ Studied the nonequilibrium dynamic phase transition in the
two important aspects of the dynamic response of the kinetikinetic Ising model in the presence of an oscillating magnetic
Ising model in the presence of an oscillating magnetic fieldfiéld by extensive MC simulation. Thei§] have also iden-
This kind of phase transition in the Ising model was studiedified t_hat this dynamic phase transition is assomate_zd with the
by Tome and Olivierd4]. They solved the mean-fiel@g/F) ~ °réaking of the symmetry of the dynamic hysteresish)

dynamic equation of motiofor the average magnetizatipon loop. In t.he dynamically d|sordere(d'a]ue of order param-
of the kinetic Ising model in the presence of a sinusoidallyeter van!she)sphase Fhe correspondmg hysteresis I'oop IS
oscillating magnetic field. They have defined the order pa§ymmetrlc, and loses its symmetry in the ordered phgise
rameter as the time averaged magnetization over a full cycle
of the oscillating field and showed that depending upon the
value of the field and the temperature, the order parameter
takes nonzero value from a zero value. Precisely, in the field
amplitude and temperature plane, there exists a phase bound-
ary separating dynamic orderédonzero value of order pa- Q=0
rametey and disorderedorder parameter vanishephases.

They [4] have also observed and located a tricritical point

(TCP), [separating the natur@iscontinuous-continuol®f h,

the transition on the phase boundary lirjeee Fig. 1. How-

ever, such a mean-field transition is not truly dynamic in /
origin and exists even in the stafior zero frequencylimit.

This is because, if the field amplitude is less than the coer-
cive field (at a temperature less than the transition tempera-

. . . Q>0
ture without any fielg, then the response magnetization var-
ies periodically but asymmetrically even in the zero
frequency limit; the system remains locked to one well of the T
free energy and cannot go to the other one in the absence of
fluctuation. FIG. 1. Schematic diagram of the dynamic phase boundary in

Lo and Pelcovitg5] first attempted to study the dynamic e field amplitude ;) and temperatureT) plane. The dotted line
nature of this phase transition in the kinetic Ising model byis the boundary of the discontinuous transition and the solid line
the Monte CarldMC) simulation. Here, the transition disap- represents the boundary of continuous transition. The small circle

represents the tricritical poiffCP). Insets demonstrate the break-
ing of the symmetry of the dynamic hysteresm-{ h) loop due to
*Electronic address: muktish@physics.iisc.ernet.in dynamic transition.
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ing a nonzero value to the dynamic order paramefEney
[6] also studied the temperature variation of the ac suscepti- H=-2 J;s/s;-h() > sf. 23
bility components near the dynamic transition point. The ma- ) '

jor observation was that the imaginafsea) part of the ac
susceptibility gives a pealdip) near the dynamic transition
point (where the dynamic order parameter vanishdhe
conclusions were(i) this is a distinct signal of phase transi-

tion and(ii) this is an indication of the thermodynamic na- contact with an isothermal heat bath at temperafuréor

ture of the phase transition. simplicity all J;; are taken equal to unity and a periodic
It is worth mentioning here that the statistical distribution plicity o= q y P
l%oundary condition is chosen.

of a dynamic order parameter has been studied by Side . ) . _ .
et al. [7]. The nature of the distribution changes near the A square ""?tt!ce of linear size (_10.0) has been consid-
dynamic transition point. They have also obsery&{lthat ered. At any finite temperaturg, for a fixed frequency ¢)

the fluctuation of the hysteresis loop area becomes conside?—nd amplitude IQ.O) of the field, the dynamics Qf this_syster_n
ably large near the dynamic transition point. has been studied here by Monte Carlo simulation using

In the equilibrium critical phenomena, both the length andGl‘."mb(.er single spir]-flip Qyn.amics with the Metropolis_ rate of
time scales diverge at criticality. This gives rise to the sin-SPIN flip. Each lattice site is updated here sequentially and

gularities in various thermodynamic quantities, such as th ne such full scan over the lattice is defined as the time unit
specific heat and the relaxation time. Can one expect simil or;)te Carrl]o step OrhMtEBthEﬁh The_ initial c&)_nﬂgiu:jatlon q
kinds of features in the case of this nonequilibrium dynamic@S P€€N chosen such that all thé spins are directed upward.

phase transition problem? To be specifip, is there any The 2|nstazntaneous magnetizatior(per S't.é m(t)
“relaxation time,” in this nonequlibrium problem that di- —(ML7)2isi has been calculated. From the instantaneous
verges at the dynamic transition point, afiid can there be Magnetization, the dynamic order paramete
any appropriately defined “specific heat,” that will show =(@/2m)$m(t)dt (time averaged magnetization over a full
singular behavior at the transition point? cycle of the oscillating fieldis calculated.

The main motivation of this paper is to find some answers
to these questions at least numerically. The nonequilibrium 2. Results
dynamic phase transition in the kinetic Ising model in the Figure 1 shows the schematic diagram of the dynamic
presence of an oscillating magnetic field has been studied byhase boundary in the field amplitudej and temperature
MC simulation. Also the MF dynamic equation has been(T) plane. For small values df, and T the dynamic order
solved numerically, to compare the results. The “relaxation” parameteR is nonzero and the corresponding dynamic hys-
behavior(defined in the following sectignof the dynamic  teresis loop th—h loop) is asymmetric, for larger values of
order parametd#] and the behavior of specific he@efined ho and T, the dynamic order paramet€ vanishes, corre-
in Sec. ll) near the dynamic transition point are studied byspondingly, then—h loop becomes symmetrinset of Fig.
MC simulation. It may be mentioned here that the prelimi-1), The dynamic transition temperatur&j is a function of
nary results of specific-heat singularity near the dynamigield amplitude h,). The transition across the dotted litie
transition point were reported briefly in ReB]. More de-  Fig. 1) is discontinuous and that across the solid line is con-
tailed results are reported here. The relaxation behavior hqﬁjuous_ For Very Sma” Va|ues ¢f0 the nature of the dy_
also been studied here by solving numerically the mean-fielhamic transition is continuous. In this paper, all studies are
(MF) dynamic equation of motion of the kinetic Ising model gone in the region wher® always undergoes a continuous
in the presence of an oscillating magnetic field. The MFiansition.
equation has also been solved exactly in the linearized limit |+ has been observed carefully that the dynamic order pa-
and studied in the relaxation behavior of the dynamic ordeameterQ does not acquire the stable value within the first
parameter, near the dynamic transition point. The paper igycle of the oscillating field. It takes several cycles the
organized as follows. In Sec. Il the relaxation behavior of theoscillating field to get stabilized, i.e., it shows relaxation
order parameter near the dynamic transition point is studiegenavior. Starting from the initigall spins are upconfigu-
both by the Monte Carlo simulation and by solving theration, theQ has been calculated for a various numteay
mean-field dynamic equation of motion of the kinetic Ising n) of cycles of the oscillating magnetic field and plotted
model. In Sec. Ill the temperature variation of the specific(inset of Fig. 2 against the number of cycles. Each value
heat is studied near the transition point only by the Monteys Q shown here has been obtained by averaging over 100
Carlo simulation. A brief summary of all the results is given ;andom Monte Carlo samples. The inset of Fig. 2 shows a

Here,s{(= = 1) is the Ising spin variable]; is the interac-
tion strength, andh(t) =hycos(wt) represents the oscillating
magnetic field, wherd, and w are the amplitude and fre-
quency, respectively, of the oscillating field. The system is in

in Sec. IV. typical relaxation behavior of the dynamic order parameter
Q. This has been plotted for fixed values ©f=27<0.04,
Il. RELAXATION BEHAVIOR OF THE DYNAMIC ORDER ho=1.0, andT=1.5. It shows that the dynamic order param-
PARAMETER eterQ relaxes as timé¢number of cyclesgoes on. The best-
A. Monte Carlo study fit curves shows that the relaxation is an exponential type.

So, one can writ€~ Qyexp(—n/T"), wherel is the relax-
ation time which provides the “time scale” for this nonequi-
A ferromagnetically interactingnearest neighborising  librium problem. The physical interpretation Bfis the num-
model in the presence of a time varying magnetic field carber of cycles required so th@ becomes ¥ times its initial
be represented by the Hamiltonian value (value of Q at starting cycle From the exponential

1. The model and simulation
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FIG. 2. Monte Carlo results of the temperatufi® (variation of FIG. 3. Mean-field results of the temperatufE) (variation of

relaxation time [) for two different values of field amplitudes relaxation time (') for two different values of field amplitudes
(hg): the bullet representd;=1.0 and the diamond represents (hy): the filled triangle represents;=0.4 and the filled square
hy=0.5. Solid lines show the temperatur&)(variations of dy- representd;=0.3. Solid lines represent the temperature variation
namic order parameted. Inset shows a typical relaxation of the dynamic order paramet€. Inset shows a typical relaxation
plotted against the number of cyclesThe solid line is the best-fit of Q plotted against the number of cyclas The solid line is the
exponential form of the data obtained from MC simulation. Here,best-fit exponential for the data obtained from the solution of Eqg.

L=100, andw=2mx0.04. (2.2). Here,w=2m7x0.02.
fitting, the relaxation timeI() has been measured. The tem- 2. Results
perature T) variation, for fixed values ob» andhy, of this The inset of Fig. 3 shows a typical relaxation of the dy-

relaxation timel" has been studie@n the disordered region namic order paramete for w=2mx0.02,hy=0.4, andT
of dynamic transitionand displayed in Fig. 2. The tempera- —0.765. Here, also the exponential type of relaxation is ob-
ture (T) variations ofl” are shown(Fig. 2) for two different  served and the relaxation time has been measured in the
values of ho(=0.5and 1.0) and for a fixed value of same way, discussed earlién the MC casg Figure 3
w=2mx0.04 here. From the figuréFig. 2) it is clear that  shows the temperature variation of the relaxation tifer
the relaxation timd’ diverges near the dynamic transition ,=2,+%0.02 and two different values o, (=0.3 and 0.4
point (whereQ vanishesin the both caseshp=0.5and 1.0.  Here, also from the figurdFig. 3) it is clear that the typical
time scale or the relaxation time for this nonequilibrium
B. Mean-field study problem diverges for both the casd®,€0.3 and 0.4 near

the dynamic transition poiniwhereQ vanisheg
1. Mean-field equation of motion and numerical solution

Although as mentioned earlier the mean-field system does 3. An approximate solution of the MF equation
not undergo a true dynamic transiti¢as the transition exists In the limit of hy—0 andT>1, Eq.(2.2) can be linear-
even in the static limjt the mean-field case has been con-jzeq (i.e., linearizing the tanh ternas
sidered here as a pathological one.

The time evolution of the average magnetizatiomder dm hoCog wt)
mean-field approximatignin the presence of an oscillating 0
magnetic field can be described by the equation

TR UL
wheree=1—1/T. The solution of the above equation is

dm —ertan)'(M , (2.2

Tdt T

m(t) =exp(— et/ 7) + mycog wt— ¢),

where m(t) is the instantaneous magnetization(t)  \yherem, and¢ are two constants. The value of the dynamic

=hocos(wt) is a sinusoidally oscillating magnetic field,is  order paramete® at thenth cycle of the oscillating field is
the temperature, andis a constant.

This equation has been solved by fourth order Runge- ® ® ([t
Kutta method takingr=27x0.01 anddt=0.01. The initial Q=— f m(t)dt= _f m(t)dt,
boundary condition isn(0)=1.0. From the numerical solu- 2m 27 J oy
tion for the instantaneous magnetizatimgt), the dynamic
order parametelQ [=(w/27)$m(t)dt] has been calcu- wheret,=2wn/w. The value ofQ, at thenth cycle, can be
lated. written as
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FIG. 4. Monte Carlo results of the temperature variations of FIG. 5. Monte Carlo results of the temperature variation€ gf

Ceoop for two different values ofhy: the filled square represents
hy=0.8 and the filled triangle represeritg=0.4. Solid lines repre-
sent the temperature variations Qf Inset shows the temperature
variations ofE,,, for two different values ohg: (1) hy=0.8 and
(I1) hg=0.4. Here,L =100 andw=2m7X0.01.

2mhe
Q:QoeXF{ - 7) =Qoexp(—n/T),

where Qq is a constant independent of The above form
shows thatQ relaxes exponentially with the number of
cyclesn of the oscillating field. The relaxation timE is
equal to gw/2m)e 1. It should be noted here that the dy-
namic transition occurs & = 1 in the limithy—0 [4]. So,
for hy—0 near the dynamic transition poitwhere the lin-
earization holds wellthe behavior of relaxation time is

[~ '~[T-Ty(ho—0)]"",

which shows the power layexponent is unity divergence
of the relaxation time at the dynamic transition point.

Ill. BEHAVIOR OF SPECIFIC HEAT
NEAR THE TRANSITION POINT

The time average(bver a full cyclg cooperative energy
of the system may be defined as

Ecoop= — (0/277L2) 3@ (E SEA
i

and the time averagddver a full cycle total energyinclud-
ing both cooperative and field parof the system can be
written as

Eto= — (w/27L?) é (% sisj+ h(t)zi: Siz)dt.

The temperature variations &, andE.,, have been stud-
ied. The specific heats are defined @g,=dE,,;/dT and

for two different values ohg: the filled square represenlig=0.8
and the filled triangle represerttg = 0.4. Solid lines represent the
temperature variations @. Inset shows the temperature variations
of E, for two different values ohy: (I) hy=0.8 and(ll) hy=0.4.
Here,L=100 andw=27x0.01.

Ceoop= dEcoop/dT. The temperature variations of the specific
heats have also been studied and have prominent divergent
behavior near the dynamic transition poimthere Q van-
ishes.

Here again, a square lattice of linear slzg=100 has
been considered. Bof.,,,andE, are calculated using MC
simulation. Each data point has been obtained by averaging
over 100 different MC samples.

A. Results

The temperature derivatives &, and E,; can be de-
fined as the specific heats for this nonequilibrium problem.
The temperature variations @, Cgoof =dEqq,/dT), and
Ciot(=dE;,/dT) have been studied. The valuesigf(=0.4
and 0.8 are chosen here in such a way t@aalways under-
goes a continuous transition. The temperature variations of
Q. Ccoop, are shown in Fig. 4. The inset shows the variation
of total cooperative energ .o, (Per spin with temperature
(T). In this case the frequency] of the field is kept fixed
(0=0.0629. Figure 5 shows the temperature variatidor
the same values ab, hy, andT) of C,, and the inset shows
the temperature variation of the tota@ooperative+ field)
energy(per spin. From the figure it is clear that the appro-
priately defined specific heaG.,,, andC, diverge near the
dynamic phase transition point.

IV. SUMMARY

The nonequlibrium dynamic phase transition, in the ki-
netic Ising model in the presence of an oscillating magnetic
field, is studied both by Monte Carlo simulation and by solv-
ing the mean-field dynamic equation of motion.
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Acharyya and Chakrabaifté] observed that the complex same material, by extending their previous styéy. The
susceptibility components have peals dips at the dy- dynamic phase transitions have been studied from the ob-
namic transition point. Sidest al.[7] observed that the fluc- served variation ofQ. However, the detailed study of the
tuation in the hysteresis loop area gro(@sems to diverge dynamic phase transitions by measuring variations of associ-
near the dynamic transition point. ated response functior{such as the ac susceptibility, spe-

In this study it is observed that the relaxation time and thecific heat, correlations, relaxations, etbave not been done
appropriately defined specific heat diverge near the dynamiexperimentally.
transition point. All the results are obtained here numeri-

cally. No attempts were 'made to extract any exponent values ACKNOWLEDGMENTS
from the numerical studies.
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